

User
ManUal

BILL V’S DERBY

TIMERS
Arduino Based Pinewood Derby

3-Lane Racetrack Timer

Enhanced Design Version 5

Page 1

1 INTRODUCTION
The Pinewood Derby racetrack timer discussed herein is a relatively simple, yet practical design that provides
the features needed to conduct a successful race event. This version of the design requires the timer to run
with the authors’ race management software running on a PC to control the race timer and display the race
results.

The Arduino UNO™ microcontroller board used in this project provides the interfaces to the optical lane
sensors and race start (gate) switch and executes the software that performs the timing, monitors the track
status and sends the race results and track status to the PC for display.

The race management software running on the PC provides display of the finish order, race times, and track
status. Race times are displayed down to 0.0001 seconds. In addition, this version also provides display of
racer names and car numbers imported from a user provided roster file.

Race management software features include:

 Race events that are run from a Race Plan which provides car lane assignments for each heat.
 Automatic generation of the race plan from a user provided roster.
 Display of car number and racer name assigned to each lane.
 Lane masking – both manual & automatic (aka: “BYE” lane).
 Ability to skip or rerun a heat.
 Ability to view results from previously run heats.
 Generation of the following reports for viewing/printing:

o Race Plan – Print out is typically used to assist in staging cars for the race
o Race results report – Provides lane times of each car for each heat ran
o Standings report – Available at the completion of the race. Provides race standings (1’st, 2’nd,

3’d, etc.), average time and fastest time for each racer.

1.1 PC Requirements
The race management software is specifically tailored to run on Microsoft Windows based machines but
should run on any machine that supports the MS Windows file structure format. It has been verified to run on
MS Windows 7 and later versions including MS Windows 10. Additionally, the race management software uses
your PCs default word processor and spreadsheet software for viewing and printing race results reports. In
particular, your PC must be able to open files having the ‘.doc’ and ‘.csv’ file extensions. Software packages
such as Microsoft Office, LibreOffice, Apache OpenOffice and other free office packages support these file
formats.

Page 2

2 SOFTWARE INSTALLATION

NOTE: The following instructions are for the installation of the Pinewood Derby Elapsed Time Timer software
consisting of source code file PWD_ETTimer03-Ver5.ino, PWD_RaceManager03.pde and other files that
support them.

2.1 Arduino UNO Software Installation

2.1.1 Arduino Software Environment Installation
Download and install the free Arduino Integrated Development Environment (IDE). For complete step-by-step
instructions on how to download and install the Arduino Integrated Development Environment (IDE), visit
https://www.arduino.cc/ . Versions are available for Windows, Mac OS X, and Linux. The environment makes
it easy to write code and upload it to the board. The WEB site also provides tutorials to help you every step of
the way.

NOTE: Installation of the Arduino IDE also installs the necessary USB drivers for your PC to communicate with
the Arduino via a serial RS-232 type (i.e. COM1, COM2, etc.) communication link. These drivers are also used by
the race management software discussed in Section 2.2 below.

2.1.2 Arduino Source Code Installation
Once you have the Arduino development environment installed (per Section 2.1.1) perform the following to
install the Arduino source code:

1. Create a subfolder called ‘PWD_ETTimer03-Ver5’ under the “Arduino” folder. The “Arduino” folder was
created during the install, usually under your Documents folder.

2. Extract the file ‘PWD_ETTimer03-Ver5.ino’ from the zip file provided and copy it into the
‘PWD_ETTimer03-Ver5’ folder created in the previous step.

This is a typical folder/file hierarchy but may vary:

Documents

Arduino

libraries

 PWD_ETTimer03-Ver5

 PWD_ETTimer03-Ver5.ino

Page 3

2.1.3 Uploading the PWD_ETTimer code to your Arduino Board
Perform the following steps to upload the PWD_ETTimer code to the timer unit’s Arduino microcontroller.

Step Action Comments
1 Ensure your PC is powered up and ready.
2 Connect the track timer (Arduino board) to your

PC USB port via a USB cable.
Verify the Arduino board is powered
up (Power LED is illuminated)

3 Double click on the ‘PWD_ETTimer03-Ver5.ino’
file to launch the file and bring up the Arduino
integrated development environment (IDE).

Arduino integrated development
environment window is displayed
with the PWD_ETTimer03-Ver5
source code listing.

4 Select the ‘Tools/Board’ pull-down menu to
select/verify the Arduino Uno board is selected.

5 Select the ‘Tools/Port’ pull-down menu to
select/verify the COM port selection (i.e. COM1,
COM2, etc.).

Arduino COM port is selected /
verified.

6 Select “→” (upload) to start the compile and
upload process.

The program will compile and
automatically upload to the Arduino
board.

7 OPTIONAL
To verify a successful upload, perform the
diagnostic test procedure located at the end of
this document.

Refer to the Arduino website for more in depth instructions if problems are encountered. Note that once the
software has successfully been uploaded to the Arduino board, it is there permanently, unless overwritten by
another upload. Hence, you only have to perform these steps once. Future use of the Arduino timer during
your race events does not require an upload. Just connect the Arduino timer to your PC, launch the Race
Manager software and you should be ready to go.

Page 4

2.2 Race Management Software Installation
Download and install the free Processing3 integrated development environment (IDE) from the Processing.org
website. For complete instructions on how to download and install the Processing3 development
environment, visit https://processing.org. The WEB site also provides tutorials and step-by-step instructions to
help you every step of the way. Note: This version is specifically developed for MS Windows PCs.

For Windows machines:
 Use File Explorer to view the contents of the Processing zip file (e.g. processing-3.5.3-windows64.zip) you

downloaded from the processing.org website. It should contain a folder called ‘processing-x.x.x’ (where
x.x.x is the version#).

 Drag the ‘processing-x.x.x’ folder into your C:\Program Files\ folder.
 Double click ‘processing.exe’ to launch the program and cause it to install. If everything goes right it should

create a Processing folder under your Document folder and start with the Processing IDE screen displayed.
 Exit the Processing3 program.

Perform the following to install the files associated with the race management software (see folder/file
hierarchy example below). Note that the Processing3 source code file must reside in a folder having the same
name (less the ‘.pde’ file extension) in order to launch correctly.

1. Create a folder called ‘PWD_RaceManager03’ under your Desktop/Username folder.
2. Extract the file ‘PWD_RaceManager03.pde’ from the zip file and copy it into the

‘PWD_RaceManager03’ folder just created.
3. Extract the files ‘Roster_Template.csv’ and ‘Sample_Roster.csv’ from the zip file and copy them into

the ‘PWD_RaceManager03’ folder as well.
4. Create a subfolder called ‘data’ under the ‘PWD_RaceManager03’ folder.
5. Extract the files ‘ArialNarrow-Bold-48.vlw’, ‘BillV_Logo.png’ and ‘PPN_Table-3.csv’ from the zip file and

copy them into the ‘data’ folder.

Below is a typical folder/file hierarchy for the race manager program that should look like this (except for file
icons):

Desktop

<your user name>

 PWD_RaceManager03

data
 ArialNarrow-Bold-48.vlw
 BillV_Logo.png
 PPN_Table-3.csv

 PWD_RaceManager03.pde

This version of the race management software allows you to store the race roster files in the folder of your
choice. Once the race roster is imported the software automatically remembers the location (i.e. file path) and
will save race results and standing reports to the same location at completion of the race.

Page 5

- - CAUTION - -
Do not store race roster files under folders such as ‘program files’ that are protected and require
Administrator authorization to access. Doing so will cause the race manager program to crash.

Perform the following to create a folder under which your race documents such as race rosters will be saved.

1. Create a folder called ‘Race_Documents’ under your Desktop/Username folder.
2. Extract the files ‘Roster_Template.csv’, and ‘Sample_Roster.csv’ from the zip file and copy them into

the ‘Race_Documents’ folder.

Below is a typical folder/file hierarchy for you race documents. Remember that the race manager software will
automatically save the race reports (race plans, race results & race standings) to the same folder in which the
race roster was imported from.

Desktop

<your user name>

Race_Documents
 Roster_Template.csv
 Sample_Roster.csv

2.2.1 Launching the Race Management Software
Ensure the timer is connected to your PC via a USB cable and powered up before proceeding.
Double click on the ‘PWD_RaceManager03.pde’ file to launch the file and bring up the Processing3 integrated
development environment. Select the Run button () (upper left) on the PDE window to launch the race
manager software. The software will open with the SETUP page displayed as shown in Figure 1 below.

Figure 1 - Program Startup Screen

Page 6

2.2.2 Making ‘PWD_Racemanager03.pde’ Code A Stand-alone Executable
The ‘PWD_RacemManager03.pde’ source file can be converted into a standalone JAVA executable so you
won’t have to launch the Processing3 Development Environment each time you use the program. It may
require the installation of JAVA on your PC. Please visit https://processing.org for complete instructions on
how to perform this task. This is an optional task and does not need to be performed to run the program.

Page 7

3 TIMER OPERATION

3.1 Timer Operation Overview
Operation of the Arduino based timer is straight forward. The track timer code running on the Arduino cycles
through four states as follows:

 Track Not Ready
 Ready
 Racing
 Finished

The “Track Not Ready” state is displayed at initial power-up. The “Track Not Ready” state is also displayed
when the Arduino timer receives a reset command from the PC and it senses that one or more of the optical
lane sensors is obstructed or the Gate Switch is in the wrong state to start the race. Either condition will cause
an error message to be displayed in the message box at the bottom of the screen of the race management
software running on the PC.

The “Ready” state is displayed when the timer receives a reset command from the PC and the optical lane
sensors and Gate Switch are in the correct state to start the race.

The “Racing” state is displayed when the timer has sensed activation of the Gate Switch indicating the cars
have left the gate and the race is underway.

The “Finished” state is displayed when all cars have crossed the finish line or when 10 seconds have elapsed,
whichever occurs first. The 10-second time-out is for cases where a car fails to cross the finish line or a lane
was not used. In those cases, dashes will be displayed for the lane time and the Finish Order box will remain
blank. The 10-second time-out does not apply for lanes that have been masked and thus ignored by the timer.

3.2 Using the Race Management Software
The race management software running on the PC provides the human interface that allows for control of the
timer and display of race results. Additionally it performs a number of race management functions such as
lane assignment and saving race result data for post-race processing.

3.2.1 Roster Preparation
Prior to program start up the user must create a roster file containing the first name, last name, car number
and a group name for each racer participating in the race (See Figure 4). Typically races are conducted one
group at a time but the software does allow for more than one group (e.g. Tigers & Bears) to race together
which is sometimes done if a group has a small number of members. In such cases, the ‘Group’ column is used
to parse race results by group in the Group Standings report. User defined columns such as the ‘CarCheck’
column shown in the figure below may be added to the right of the four required columns. These extra
columns will be ignored by the software. The file must have a header row with the header text exactly as
shown in the figure below and be saved in comma-separated values (.csv) format.

Page 8

LastName FirstName CarNo Group CarCheck
Gonzales Speedy 5 Tigers
McQueen Lightning 2 Tigers

Nogas John 11 Bears
Tired Phlat 3 Bears

Figure 2 – Example Roster File Format

The roster must contain a minimum of 2 but no more than 40 racers. Car numbers must be within the range of
1 to 99 and can contain no letters or other non-numeric characters. The roster will be used to automatically
generate race plan that satisfies the Partial Perfect-N (PPN) criteria. These types of plans are the most
commonly used by scouting and AWANA organizations and satisfy the conditions where (1) each car races the
same number of times, (2) each car races in each lane and (3) where possible (depending on the number of
races in the group), each car races against different opponents in each heat.

3.2.2 Race Setup
The race manager software has 3 displays consisting of a SETUP page, RACING page and RESULTS page. Each
page is selected by clicking on the appropriate page select tab at the top left of the race management screen.

Prior to running a race the race manager software must be setup to (1) establish communication with the
Arduino based timer hardware, (2) load a race roster with racer names and car numbers and (3) generate a
race plan (schedule) from which racers are selected for each heat of the race. These tasks are accomplished on
the SETUP page.

Perform the following steps to complete the race setup:

Step Action Comments
1 Connect the track timer to your PC USB port via

a USB cable.
Verify the Arduino board is powered up
(Power LED is illuminated)

2 Launch the race management software (Ref.
Section 2.2.1) and verify the SETUP page is
selected.

Race manager SETUP page is displayed
(See Fig. 1).

3 Click on the Select Com button and follow
instructions provided on the pop-up message
windows.

 If COM port selection was successful,
the selected COM port is displayed
next to the Select Com button (See Fig.
3).

 If COM port selection was
unsuccessful, appropriate error
messages will be displayed via pop-up
text boxes and you must correct the
problem before continuing.

Page 9

Step Action Comments
4 Click on the Import Roster button and select the

race roster file to import via the pop-up
selection menus. Refer to Section 3.2.1 for
creating a roster file.

The roster file will be loaded and checked
for proper format and content.
 If successful the total number of racers

will be displayed to the right of the
Import Roster button (See Fig. 3).

 If unsuccessful, appropriate error
messages will be displayed via pop-up
text boxes and you must correct the
problem before continuing.

5 Click on the Update Title button. A pop-up dialog
box will open from which you can enter a race
title (e.g. “Pack 768 Grand Prix”).

The race title is used as the header on the
Racing Page and on the race plan
document.

6 Click on the Create Plan button. The race plan is generated and total
number of heats in the race will be
displayed to the right of the Create Plan
button (See Fig. 3).

6a OPTIONAL: Once the race plan is created select
the Results page and click on the View/Print
Race Plan button. This will launch your PC’s word
processor from which you can view and print the
document.

A hard-copy printout of the race plan is
helpful in readying/staging the cars for the
current and on-deck heats.

Figure 3 – Example Setup Page

Page 10

3.2.3 Conducting the Race
Once all the race preparation steps have been completed the race event can begin. Click on the Racing tab to
select the racing page. Refer to Figure 4 at the end of this section.

Control of the timer is performed via mouse clickable buttons on the racing page (Ref. Fig. 4). They perform
the functions as listed in the table below. Additional detail is provided in Section 3.3 of this document.

Table 1 – Racing Page Button Functions
Button Function
Next Heat Sends a Reset command to the Arduino timer to ready it for the next race.

 Increments the heat count to the next non-ran heat.
 Displays the car number and racer name assigned to each lane for that

heat.
Rerun Heat Sends a Reset command to the Arduino timer to ready it for the next race

 Does NOT increment the heat count.
Timer RESET Sends a Reset command to the Arduino timer to ready it for the next race

(Done in cases where the timer returned an error message such as the gate
switch being in the incorrect state requiring a reset without incrementing
the heat number).

Gate Release
(Not Activated)

 (Not functional in this release) Sends a gate release signal to the timer unit
which in turn activates the gate release solenoid to launch the cars.

Terminate Race Causes the race event to terminate.
 Displays the race terminated message.
 Disables the ‘Next Heat’ and ‘Rerun Heat’ buttons.
 Generates the Race Results and Standings data files using data available

from any heats that were run prior to termination.
Heat Up/Down
Arrows

 Increments/decrements the heat count.
 Allows viewing of prior ran heats or advancement to un-ran heats in case

you need to skip a heat.
 Displays the car number and racer name assigned to each lane for that

heat.
 Displays the race results for that heat if that heat has already been run.

Lane Mask
Checkboxes

 Alternately displays or clears a check-mark in the checkbox each time it is
clicked (See Figure 10).

 Sends the appropriate lane mask and un-mask commands to the Arduino
timer.

Page 11

3.2.4 Running a Race
Perform the following steps to run a race:

1. Ensure all the race preparation steps have been completed on the SETUP page per Section 3.2.2.
2. Select the Racing page (Ref. Fig. 4).
3. Ensure the gate switch is closed and all lane sensors are un-obstructed.
4. Click on the ‘Next Heat’ button (Refer to Fig. 5).

a. The race status advances to the ‘Ready’ state if the track lane sensors and gate switch are in the
correct state to start the race.

b. The Heat# advances to first un-ran heat.
c. Car numbers and racer names are displayed for each lane according to the race plan.

5. Stage the cars on the track at the start line.
6. If any lanes are designated as a BYE lane a check-mark will appear in the appropriate Mask checkbox to

designate it as such and “BYE Lane” will be displayed in the name box (See Fig. 10).
7. When ready, start the race by activating the gate release handle.

a. The race status advances to the ‘Racing’ state.
8. Wait for all cars to cross the finish line or when 10 seconds has elapsed, whichever occurs first (Refer

to Fig. 6).
a. Race results are displayed and race status advances to the ‘Finished’ state

9. Repeat steps 4 through 8 till all heats have been ran.
10. At completion of the race the race results files will be generated. These files can be accessed via the

Results page and viewed/printed by clicking on the appropriate button.

Figure 4 – Initial Timer Startup Screen

Page 12

Figure 5 – Timer Ready Example

Figure 6 – Race Finished Example

Page 13

3.2.5 Race Results
At the completion of the race (all heats ran) the race management software creates the overall standings
report file from the data in the race results table (See Fig. 7). Race standings in the overall standings report is
determined by the cumulative total time of all heats ran for each car, with the lowest total time being
assigned 1’st place, second lowest time 2’nd place, etc. If the roster contains more than one race group, the
software also generates a group standings report in which race standings (position) are parsed by group (See
Fig. 8).

Position CarNo Driver Group TotalTime HeatsRan AvgTime FastTime
1 49 Brooke Motorhead Tigers 7.4016 3 2.4672 1.6761
2 68 Paul Jones Wolves 7.5543 3 2.5181 1.4353
3 2 Mini Cooper Tigers 9.9048 3 3.3016 1.5291
4 7 Mike Quick Bears 9.9111 3 3.3037 1.5161
5 50 Harley Davidson Bears 10.4187 3 3.4729 2.3243
6 5 Rick Jackson Wolves 11.2236 3 3.7412 2.7567
7 19 Speedy Gonzales Wolves 11.658 3 3.886 2.2262
8 9 Bill Leadfoot Tigers 11.6748 3 3.8916 2.1091
9 1 John Nogas Bears 13.3152 3 4.4384 2.3209

10 30 Blake Goslowe Bears 13.5825 3 4.5275 3.079
Figure 7 – Example Overall Race Standings Report

Position CarNo Driver Group TotalTime HeatsRan AvgTime FastTime
1 7 Mike Quick Bears 9.9111 3 3.3037 1.5161
2 50 Harley Davidson Bears 10.4187 3 3.4729 2.3243
3 1 John Nogas Bears 13.3152 3 4.4384 2.3209
4 30 Blake Goslowe Bears 13.5825 3 4.5275 3.079
1 49 Brooke Motorhead Tigers 7.4016 3 2.4672 1.6761
2 2 Mini Cooper Tigers 9.9048 3 3.3016 1.5291
3 9 Bill Leadfoot Tigers 11.6748 3 3.8916 2.1091
1 68 Paul Jones Wolves 7.5543 3 2.5181 1.4353
2 5 Rick Jackson Wolves 11.2236 3 3.7412 2.7567
3 19 Speedy Gonzales Wolves 11.658 3 3.886 2.2262

Figure 8 – Example Group Race Standings Report

Click on the Results tab to access the race results reports. Refer to Figure 9. Click on the appropriate button to
launch your PC’s default word processor or spreadsheet software from which you can view and print the
document.

Page 14

Figure 9 – Race Results Page for Accessing Race Result Reports

3.3 Additional Information – Race Management Controls

3.3.1 Next Heat Button
The ‘Next Heat’ button when clicked sends a reset command to the Arduino timer to ready it for the next race.
In addition it advances the heat count to the next available (not yet run) heat number which is then displayed
along with the associated car numbers and racer names assigned to their respective lanes for that heat. For
example, if heats 1 – 5 where run and the down arrow in the heat box was clicked so the heat 2 results are
displayed, clicking the ‘Next Heat’ button will advance the heat count to heat 6 since it is the next available
(not yet run) heat number. The ‘Next Heat’ button is deactivated (greyed out) when the timer is in the “Ready”
and “Racing” state.

3.3.2 Rerun Heat Button
The ‘Rerun Heat’ button when clicked sends a reset command to the Arduino timer to ready it for the next
race. But unlike the “Next Heat’ button it does not increment the heat count. Instead, the heat number
remains unchanged to allow rerun of that heat. Note that when the ‘Rerun Heat’ button is clicked the user will
be presented with a “Are you sure?” pop-up; thereby allowing the user to opt out in the case the selection
was made in error. Note also that when a heat is rerun, prior results will be overwritten by the new race
results. The ‘Rerun Heat’ button is only active (not greyed out) when the timer is in the “Finished” state.

3.3.3 Heat # Up/Down Arrow Buttons
The Up/Down arrow buttons in the Heat # window allow the user to increment/decrement the Heat number
from heat 1 up to the maximum number of heats in the race. The maximum number of heats is determined in

Page 15

the race plan. When stepping through the heats the car numbers and names assigned to each lane for that
heat are displayed. When selecting a heat that has already been performed, race results (times & finish order)
are also displayed. This feature is useful in cases where you may need to skip ahead to another heat or when a
previously ran heat has to be re-run.

3.3.4 Terminate Race Button
The ‘Terminate Race’ button provides an easy method to end and close the race management software. When
clicked, the user will be presented with a “Are you sure?” pop-up allowing the user to continue in case the
selection was made in error. If selected, the race management software will generate the Race Results data
file using data available from any heats that were run prior to termination.

3.3.5 Timer Reset Button
The ‘Timer Reset’ button provides a method to issue an independent RESET command to the Arduino timer
without having to select the ‘Next Heat’ or ‘Rerun Heat’ buttons and thereby possibly affecting the state of the
race management software. This is typically done to clear any lane sensor or gate switch error messages
reported by the Arduino timer.

3.3.6 Lane Mask Check Boxes
The ‘Mask’ checkboxes alternately display or clear a check-mark in the checkbox each time it is clicked.
Manually checking a ‘Mask’ checkbox should only be done when running a practice heat in which less than 3
cars are racing. When checked, it sends the mask command for that lane to the Arduino timer. When
unchecked it sends the unmask command for that lane to the Arduino timer. The Arduino timer will ignore any
masked lanes (i.e. not wait for them to time out) while the race is in progress. Figure 10 shows an example of
an automatically checked lane mask box when the automatically generated race plan includes a BYE lane
designation in a heat.

Figure 10 –Lane Mask Example

Page 16

3.4 Additional Information – Files Created By the Software
The race management software will create four files consisting of a Race Plan, Race Results report, Overall
Standings report and a Group Standings report. The Group Standings report is only generated if the roster has
more than one group listed (See Fig. 2). The filenames for these reports are created at program startup and
include a date/time value retrieved from the computer’s clock.

The filename structure is as follows: “Race_Results_YYYYMMDDHHMM.csv”

Where: YYYY = 4 digit year, MM = 2 digit month, DD = 2 digit day, HH = 2 digit hour, and MM = 2 digit
minutes.

This guarantees a unique file each time the program is started and prevents any previous files from being
accidentally overwritten.

NOTE: By default these files are saved to the same folder containing the race roster. For example, if you have
the selected race roster file saved in your ‘Documents’ folder, the Race Plan, Race Results report, Overall
Standings report and the Group Standings report files will all be saved in the same folder.

Page 17

4 Arduino Timer Communication
Communication between the Arduino based timer and the PC is via the USB interface which has been set up as
a serial link running at 9600 baud, 8 bits, no parity, and 1 stop bit (9600/8-N-1). ASCII character strings
transmitted between the timer and the PC are used to control the timer as described in the table below.

ASCII Command Direction Description

R PC-to-Arduino Reset – Resets the Arduino timer
M1 – M3 PC-to-Arduino Lane Mask commands for lanes 1 thru 3. Instructs Arduino timer to set the

corresponding mask flag to cause the timer to ignore that lane.
U PC-to-Arduino Lane Unmask command. Instructs Arduino timer to clear all mask flags.
C PC-to-Arduino COM Check command. Causes Arduino timer to send the ‘@’ character

back to the PC.
NRD Arduino-to-PC Not Ready – Informs the race management software the timer is in the

‘Not Ready’ state.
RDY Arduino-to-PC Ready – Informs the race management software the timer is in the ‘Ready’

state.
RAC Arduino-to-PC Racing – Informs the race management software the timer is in the

‘Racing’ state.
FIN Arduino-to-PC Finished – Informs the race management software the timer is in the

‘Finished’ state.
GSW Arduino-to-PC Gate Switch – Informs the race management software that the Gate

Switch is in the wrong state to start the race.
TRK
-or-

TRK, x, y, …

Arduino-to-PC Track Status – Informs the race management software that the track is not
ready for the next race because the Gate Switch or one or more optical
lane sensors are obstructed. If a lane sensor is obstructed the TRK
message will include the effected lane numbers (separated by commas).

In addition to the above serial messages the Arduino passes the race results to the PC display software via a
single ASCII string having the following format:

Times: a.aaaa b.bbbb c.cccc
where:

 a.aaaa = Lane 1 time
 b.bbbb = Lane 2 time
 c.cccc = Lane 3 time

Troubleshooting: Use of the Arduino IDE serial monitor or another serial terminal program can be used to
observe these commands or to send the reset or mask commands to the Arduino. Refer to the diagnostic test
procedure on the following pages to assist in troubleshooting any issues. Feel free to contact the author via
email at billv923@outlook.com for additional help.

Page 18

DIAGNOSTIC TEST PROCEDURE

This test procedure was written to assist in testing and troubleshooting the Arduino based timer hardware and
software. It does not test the race manager software that runs on your PC.

Setup:

 Bring up the Arduino Integrated Development Environment (IDE) on your PC (Refer to Section 2.1)
 (Optional) Select and load the PWD_ETTimer03_Ver5.ino file.
 Select the ‘Tools/Port’ pull-down menu to select/verify the port selection (i.e. COM1, COM2, etc.).
 Open the serial monitor by clicking on the little magnifying glass near the upper right corner of the IDE

display. Ensure the baud rate is set to 9600.

Perform the following test procedure.

Step Action Expected Results
1 Ensure the Gate Switch is closed and the

optical lane sensors are properly
illuminated (not obstructed).

N/A

2 On the serial monitor enter the letter R in
the command line, press ENTER or click on
the Send button.

The message “RDY” is displayed on the monitor.

If you get the message “GSW” followed by “NRD”
the Gate Switch is in the ‘not ready’ state.
Troubleshoot and correct the problem before
continuing.

If you get the message “TRK, …” followed by
“NRD” one or more optical lane sensors are not
ready (not properly illuminated). Troubleshoot
and correct the problem before continuing.

3 Obstruct (block) the light illuminating the
Lane 1 optical sensor.

Then on the serial monitor enter the letter
R in the command line, press ENTER or
click on the Send button.

N/A

The message “TRK, 1” followed by “NRD” on the
monitor indicating optical lane sensor for Lane 1
is not ready.

4 Repeat step 3 for each lane. Same as step 3 except the lane number will
correlate with the lane being obstructed.

If the lane number does not correlate with the
lane being obstructed, check the lane sensor
wiring for a miswire, correct the problem and
repeat the test.

Page 19

Step Action Expected Results
5 Set the Gate Switch to the open position.

On the serial monitor enter the letter R in
the command line, press ENTER or click on
the Send button.

N/A

The message “GSW” followed by “NRD” is
displayed on the monitor.

6 Set the Gate Switch back to the closed
position.

N/A

7 Ensure the optical lane sensors are
properly illuminated.

N/A

8 On the serial monitor enter the letter R in
the command line, press ENTER or click on
the Send button.

The message “RDY” is displayed on the monitor.

9 Momentarily toggle the Gate Switch to
the open position and then back to the
closed position.

The message “RAC” is displayed on the monitor.

10 Wait 10 seconds. After 10 seconds the following message is
displayed:

“Times: 9.9999 9.9999 9.9999”

Followed by the message “FIN” on the monitor.

11 Ensure the Gate Switch is closed and the
optical lane sensors are properly
illuminated.

N/A

12 Momentarily depress the RESET switch. The message “RDY” is displayed on the monitor.
13 Momentarily toggle the Gate Switch to

the open position and then back to the
closed position.

The message “RAC” is displayed on the monitor.

14 Wave your hand over the optical lane
sensors to obstruct the light illuminating
them before the 10 second timeout has
occurred.

The moment the last lane sensor is tripped the
following message is displayed on the monitor:

“Times: x.xxxx x.xxxx x.xxxx”

Followed by the message “FIN”, where x.xxxx is
the recorded time for lanes 1 thru 3.

15 Repeat steps 11 thru 14 as desired
obstructing the light to the lane sensors in
different sequences.

Same results as steps 11 thru 14.

16 On the serial monitor enter the letter C in
the command line, press ENTER or click on
the Send button.

The message “@” is displayed on the monitor.

17 On the serial monitor enter the letter R in
the command line, press ENTER or click on
the Send button.

The message “RDY” is displayed on the monitor.

-- TEST COMPLETE

